The User Interface (UI) Discovery Application to Measure Query Accuracy on Interface Repository

Shofiyatun Najah1, Muhammad Ainul Yaqin2, Linda Salma Angreani3
Abd. Charis Fauzan4

1,2,3Department of Informatics Engineering, Universitas Islam Negeri Maulana Malik Ibrahim, Indonesia
4Department of Computer Science, Universitas Nahdlatul Ulama Blitar, Indonesia

Email: 1shofiyatun.najah11@gmail.com, 2yaqinov@ti.uin-malang.ac.id, 3linda@uin-malang.ac.id, 4abdcharis@unublitar.ac.id

Received: 6 November 2018; Revised: 26 April 2019; Accepted: 5 May 2019

Abstract

SaaS (Software as a Service) application has many architecture layers, those are: data layer, service layer, process layer, and UI layer. UI layer is a GUI layer which has function to prepare the interface both system and user receiving input from user and show back to user. This research tells about how to build user interface (UI) discovery as a part of software based on SaaS. The aim of this application is to make easier user for finding user interface which appropriate needed configuration. This UI discovery application is developed by using ontology theory, those are RDF map and query SPARQL. The working way of UI discovery is entering the keywords which contain form name, or component details needed. UI discovery will search based on the entering keywords automatically. The trials will use two search models, those are data search and detail search. The calculation result of those both trials are from recall score 95\%, accuracy score 100\%, and precision score with different percentage. The percentage of data search model is 95\%, while on detail search model is 90\%. Those differences found because of some of irrelevant document found on detail search and netted query. Therefore, on data search shows that the result is more relevant and shows the better of system's prosperity.

Keywords: software as a service; discovery; query accuracy; interface repository

Introduction

SaaS (Software as a Service) is a model where applications are offered to clients as a service. If a service is presented to the client, the client does not need to treat and update the application, But conversely, if the provider will update the application, then the client only following the provider, it was explained by previous research on similar topics (Najah, Ainul Yaqin, Angreani, & Fauzan, 2019). SaaS has a variety of architectural layers to fill the functional requirements in an application. SaaS is one of the service delivery models where of software as a service will change the way people build, sell, buy and use software (Kumar, 2014). The purpose of this research is finding the user interface of program become more accessible. The step to overcome these problems are by using an ontology approach (Fauzan, Sarno, & Ariyani, 2018).

An ontology is an explicit, machine readable specification of a shared conceptualization (Gómez-pérez, Corcho, & Madrid, 2002). A development tool for Semantic Web applications should provide services to access, visualize, edit, and use ontologies (Knublauch, Fergerson, Noy, & Musen, 2004). With the growth of ontologies over the Web, one of the challenging tasks is to search for the desired ontologies (Patel, Supek- kar, Lee, & Park, 2003). Ontology is used for
the search process. Then, the keyword are searched are not only the keywords entered by user but those keywords have synonyms and related with the words are semantically arranged in the ontology. The GUI layer, UI ontology is built to give wider meaning and make computer systems work easier. Ontology is a model of lists the types of objects, a relation can connect with each other, and a way to combine objects and relations. SaaS has layers which consists of data layer, service layer, process layer, UI layer respectively. The data layer and the service layer are the foundation and they establish the data structure and operations for applications. The process layer manages collaboration mechanisms, organizes services into the process to achieve complex tasks. The UI layer provides the interface between systems and end users, accepts input from users and returns results back to users (Shao, 2011).

UI layer makes users easy to change and configure their experience, including adding/deleting icons, colors, fonts, titles, menus. The step to developed a user interface is to become an important role in system, namely by User Interface Management System (UIMS). User Interface Management System (UIMS) is a mechanism for the process of separating the Graphic User Interface (GUI) code in a computer program. The purpose of UIMS is creating how to get a consistent interface has a display of different applications but in the same system.

The workshop was held in Seattle, in 1982. The workshop explained about development of graphical user interfaces, where interactive input was handled by the application. The result of the workshop was user interface is implemented by using tools of programming and separate from the application code. User Interface Management Systems (UIMS) are the mediators between the user and the application programs (Enderle & Duce, n.d.). Interactive application should have software as a support in controlling applications (external control) than application code (internal control) (Barber & Lucas, 1983). The Seeheim architecture calls for three UIMS components (Dan R. Olsen, 1992).

The primary component is the dialog control. The dialogue control component manages the dialogue between the user and the application. This structure is then converted into a sequence of input tokens sent to the application interface model in order to execute the command (Green, 1985). Presentation model is the component responsible for the interface that includes input and output available to the user. RDF (Resource Description Framework) is used as a representation of semantic web technology components. RDF is a metadata used to describe the address of a resource on the web. SPARQL is a component used as a query to retrieve data stored in RDF. UI Discovery is an important part of web service architecture. UDDI (Universal Description, Discovery, and Integration) provides a standardization and discovery of UI ontology for keyword searches. The discovery process cannot be known on the UI web service if the keyword is different but has the same meaning. So, the search can be resolved by discovery system to match the query on web service using ontology. Measurement of business process similarity is searching of distance between two business processes were compared (Fauzan, Sarno, & Yaqin, 2018) and it can be done in various ways, that it can use a label matching similarity, structural similarity, or behavioral similarity (Fauzan, Sarno, Yaqin, & Jamal, 2017) and (Yaqin, Sarno, & Fauzan, 2017). This research proposed approaches annotation interface repository using RDF Map as ontology with UI discovery. So that, UI discovery be smart and automated then use SPARQL query.

Material and Methods

The data used was obtained from previous research that is about web services in ERP boarding schools in academic. The data is processed by the PHP file that contains an interface on a form. Then, the file parsed to take the interface components. Figure 1 shows the diagram block of process UI discovery.

Figure 1. Diagram Block of Process UI Discovery

Data Collection

The data is used namely a PHP document. Figure 2. Shows the PHP document contains interface with various HTML tags.
Figure 2. The Interface Document

Database Design Interface Repository

The data is processed by the PHP file that contains an interface on a form. Then, the document parsed to take the interface components. Figure 3. Shows the design database of interface repository, the name of tables are form and component. The function of form table is to save the identify that are name, location, and source code or contents of the form. While, the function component table is to save data attributes of interface elements are the name of components, and component IDs.

RDF Map

Nowadays, the most formatted data is stored in relational databases. To be able to use this data in a semantic context, it has to be mapped to RDF, the data format of the Semantic Web. RDF Map is an ontology of web semantic as an intermediary in accessing data in a repository. Figure 4. shows RDF Map from the ui_repository database saved in turtle format.
Figure 4. The Result of RDF Mapping

The Mapping of this research created by template of D2R Mapping Language. Map: The database is used to connect the ui_repository database, on the mapping file there is a map: database. Map: ClassMap serves to describe the columns in the database. The each classMap has a Property Bridge. The functions of Property Bridge is to initialize each column in the table. Vocab: is a part of the Property Bridge, that is used as a variable in the SPARQL query.

The result of process mapping is a RDF file in Turtle (.ttl) format. Then, the database of SQL can be accessed by SPARQL queries using D2RQ tool. Figure 5. Describes about UI discovery approach with RDF mapping. After that, the user can access the converted data from relational model to RDF using D2R server (Chen, Zhao, & Zhang, 2013).

Figure 5. The Approach of RDF Mapping

SPARQL

SPARQL is a query language used for RDF data. In 2004 the RDF Data Access Working Group (part of the Semantic Web Activity) released a first public working draft of a query language for RDF, called SPARQL (Consortium, 2003). The syntax of query SPARQL are select, where, and from. This research used three variables are name of form, URL, and code. The variable begins with question mark symbol (?) on select syntax. The “where” syntax is used to select the field of object discovery. The “from” syntax is used to determine the table which the data will be retrieved. In Figure 8 we implement the SPARQL query on the process of discovery.

Figure 8. SPARQL Query

Results and Discussion

The scenario of this research is the repository interface data search process in data search menu. It is used form name as keywords. In this step, data search process only uses name form search which saves in interface repository, and the result is a name form which contains word element as user's keyword. The next step is detail search process. In this step, the searching is based on name’s form or metadata which saves in repository.

The trial of this system includes data query search trial in interface repository. Precision score and recall will indicate document relevance score which is found from discovery process. The trial uses 30 form data from academic sector of Islamic boarding school information systems. The result of recall, precision, and accuracy calculation trial on 20 queries which has been tried on data search and detail search step has average result as in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Recall</th>
<th>Precision</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Search</td>
<td>95%</td>
<td>95%</td>
<td>100%</td>
</tr>
<tr>
<td>Detail Search</td>
<td>90%</td>
<td>95%</td>
<td>100%</td>
</tr>
</tbody>
</table>

The trial result which has done based on the previous scenario known that there was a difference on string-matching word search which was input by user on UI discovery. By using 20 keywords, the trial of data search and detail search on interface repository has showed ratio accurate score.

The difference of accurate score is caused of there were some of irrelevant document found on
Conclusion

Based on the trial, on user interface discovery application is used RDF map as ontology approach and as mediator to access the data in database relational. The differences of data search and detail search are seen from the difference of entering query in searching process. On interface data search step, the netted query is based on name form only. Whereas on detail search step, the netted query is not only name form but also all saved query in database.

Based on the trial of two searching model, data search and detail, by entering 30 data and 20 queries which has tried in each searching models. On data search step got recall score 95%, precision 95%, dan accuracy 100%, whereas got recall score 95%, precision 90%, dan accuracy 100%. Those differences found because of some of irrelevant document found on detail search and netted query. Therefore, on data search shows that the result is more relevant and shows the better of system's prosperity.

Suggestion

This paper, there are a few things need to be developed, namely adding the stage of workmanship system with indexing method on search result using weighting techniques to get more relevant search results, and use OWL standardization in writing descriptions and word equations, so that discovery processes become easier.

Acknowledgement

Authors would like to thank the Informatics Engineering Department, Faculty of Science and Technology. State Islamic University of Maulana Malik Ibrahim Malang.

References

